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Abstract

This review reflects the presentations and discussion at the 14th post-American Soci-

ety of Hematology (ASH) International Workshop on Chronic Myeloproliferative

Malignancies, which took place on the December 10 and 11, 2019, immediately after

the 61st ASH Annual Meeting in Orlando, Florida. Rather than present a resume of

the proceedings, we address some of the topical translational science research and

clinically relevant topics in detail. We consider how recent studies using single-cell

genomics and other molecular methods reveal novel aspects of hematopoiesis which

in turn raise the possibility of new therapeutic approaches for patients with myelo-

proliferative neoplasms (MPNs). We discuss how alternative therapies could benefit

patients with chronic myeloid leukemia who develop BCR-ABL1 mutant subclones fol-

lowing ABL1-tyrosine kinase inhibitor therapy. In MPNs, we focus on efforts beyond

JAK-STAT and the merits of integrating activin receptor ligand traps, interferon-α,

and allografting in the current treatment algorithm for patients with myelofibrosis.
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therapies, single-cell genomics

1 | INTRODUCTION

Despite the development of significant genomic insights and the avail-

ability of successful treatment options, chronic myeloproliferative

malignancies, with the exception of chronic myeloid leukemia (CML),

remain enigmatic.1 For patients with CML, we now have five licensed

ABL1 tyrosine kinase inhibitors (TKIs) that can durably reduce the

number of CML cells, and the life expectancy of most patients now

approaches that of the normal population; for patients with higher-

risk myelofibrosis (MF), the most serious and life-threatening of the

myeloproliferative neoplasms (MPNs), there are two licensed JAK

inhibitors (JAKi) that accord rapid and substantial clinical benefits in

terms of constitutional symptoms and splenomegaly but few molecu-

lar complete remissions and no significant impact on the risk of trans-

formation to acute myeloid leukemia.2 Indeed, there is a paucity of

disease-modifying drugs for MF and the disease remains incurable

with a median survival of 4 to 5 years. This is similar to the historical

scenario that existed when cytotoxic chemotherapy was used to treat

newly diagnosed patients with CML who benefitted from a transient

control of their leukocytosis and splenomegaly but awaited the inevi-

table leukemic transformation with equanimity.

Compared with CML, the Ph-negative MPNs and particularly MF

demonstrate substantial genetic and bone marrow microenvironment

complexity, which impacts upon disease biology and treatment. In this

regard, the significant insights into the biochemical and biological con-

sequences of the well-characterized driver mutations found in about

90% of MF patients and the corresponding clinical implications is rais-

ing the possibility of new therapeutic approaches. This review, based

on the presentations at the 14th post-ASH International Workshop

on Chronic Myeloproliferative Malignancies, which took place on the

December 10 and 11, 2019, immediately after the 61st American

Society of Hematology Annual Meeting in Orlando, Florida presents

the important aspects of the biological and therapeutic advances as

well as the recent progress made in treating disease-related complica-

tions. To illustrate, we address how symptomatic anemia related to

MF can be alleviated by targeting transforming growth factor beta

(TGF-β) by an activin receptor ligand, luspatercept. We also discuss

the emerging role of single cell technologies in MPNs and tools to per-

sonalize the management of MF.

2 | USING SINGLE CELL TECHNOLOGIES
TO IDENTIFY NOVEL TARGETS IN MPNS

Since the first studies performing whole transcriptome analysis in indi-

vidual cells, termed single cell RNA-sequencing (scRNAseq) a decade

ago, there has been an explosion of technological advances in single

cell methods, resulting in advanced platforms for high-throughput

and/or multiomic approaches to study molecular biology at single cell

resolution.3 Indeed, single cell sequencing was selected as “Method of

the Year” by Nature Methods in 2013, and single cell multimodal omics

as “Method of the Year” in 2019.4 In hematology, these approaches

have been applied to gain insight into normal and aberrant hematopoi-

esis, and more recently the bone marrow niche.5-12

Technological and computational challenges and high cost have

prohibited widespread application in clinical diagnostics or monitoring

pipelines. So what is the future potential for clinical application of single

cell omics in MPNs? First, it provides the necessary resolution to detect

and characterize rare cellular populations such as leukemic stem cells. In

addition to understanding disease biology and mechanisms of relapse or

treatment resistance, this technology may identify novel leukemia stem

cell-specific drug targets. Second, dissection of tumor heterogeneity will

enable step changes in personalized medicine, identifying tumors most

likely to respond to a given treatment approach, informing the selection

of treatment combinations that are most likely to be effective in any

given cancer at a particular stage in the disease course. Thirdly, unlike

genomic (or proteomic) analyses of cells studied in “bulk,” single cell

studies provide information on specific combinations or genes or pro-

teins expressed by cellular subtypes. For example, identification of

unique combinations of cell surface proteins may enable selective

targeting of cancers were specific individual markers have not been

found. Finally, comprehensive characterization of bone marrow cells in

MPNs may be applied to simultaneously study the MPN clone together

with associated immune or nonclonal cells as well as the tissue stroma,

leading to key insights into the cell-cell interactions that are important

for disease evolution.

Key challenges for the field include reducing the high cost and

practical challenges to enable single cell omics to be delivered in the

context of routine clinical practice and clinical trials. In addition, fur-

ther advances in spatial single cell omics are required to enable study

of myeloid neoplasms in their native context, without losing key infor-

mation contained within the tissue architecture as occurs when cells

are studied “in suspension.” Moreover, just as hematology has led the

way in other areas of precision oncology, the application of single cell

technologies in MPNs is also highly relevant for other cancer types.

Recently, single cell omics has been applied to study abnormal

hematopoiesis in MF. A dramatic bias toward megakaryocyte

(Mk) differentiation was identified from early stem cells, present

across clinical and molecular MF subgroups.13 Mk progenitors were

heterogeneous, with distinct expression of inflammatory mediators

and unique populations present in MF. Aberrant cell surface expres-

sion of G6B expression on MF stem and progenitors was identified,

which could allow selective immunotherapeutic targeting of the MF

clone.
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3 | TARGETING SPECIFIC BCR-ABL1
MUTANT SUBCLONES BY ALTERNATIVE
TREATMENT APPROACHES

Although the introduction of ABL1-TKIs has revolutionized the treat-

ment of BCR-ABL1-positive leukemias, including CML and Philadel-

phia (Ph)-positive acute lymphoblastic leukemia (ALL), they are not

panacea. Outgrowth of leukemic clones harboring resistant point

mutations in the BCR-ABL1 tyrosine kinase domain (TKD) poses a

serious clinical problem. These mutant subclones are believed to

expand due to disruption of the TKI/TKD interaction. However, due

to the positioning of resistant mutations at functional key positions of

the BCR-ABL1 TKD, Lion and colleagues hypothesized that these

mutations have a biological effect on BCR-ABL1 downstream signal-

ing and oncogenic gene expression. They generated over 50 Ba/F3

cell lines expressing BCR-ABL1 with various single and compound

mutations (CMs) at levels comparable to patient-derived cells.14 These

cell lines were tested against a panel of TKIs, with a particular focus

on CMs and their in vitro responsiveness to ponatinib. Their findings

identified three categories of CMs displaying either high, intermediate,

or low sensitivity to ponatinib. While the intermediate category of

CMs was shown to respond to higher, yet clinically achievable con-

centrations of ponatinib, the inhibitory concentrations required for

growth suppression of the least sensitive category of CMs were too

high for clinical applicability.15 The latter category comprised particu-

larly CMs including the gatekeeper mutation T315I in combination

with a variety of other TKD mutations, and these CMs were shown to

be unresponsive even to the most potent TKI available at present,

thus presenting a great clinical challenge. Investigation of the effect of

individual CMs on intracellular downstream signaling identified altered

patterns in comparison to cells carrying wild-type BCR-ABL1. These

findings provided the basis for identifying potentially druggable vul-

nerabilities, implicating various compounds not directly targeting the

kinase activity of BCR-ABL1, such as cell cycle progression inhibitors,

proteasome inhibitors, and others. Interestingly, in contrast to native

BCR-ABL1 and several mutant subclones, CMs including the T315I

mutation was very sensitive in vitro to treatment with hydroxyurea

(HU), and molecular analyses provided a biological basis for the

intriguing effect of this compound. The observation that, unlike cells

with native BCR-ABL1, CMs including the T315I mutation display

highly upregulated cyclin-dependent kinase 6 (CDK6), thus raising the

possibility that specific inhibitors of the enzyme might be effective in

these instances. Indeed, in vitro testing revealed great efficacy of pal-

bociclib and ribociclib at concentrations readily achievable in the clini-

cal setting. Moreover, synergistic effects of ponatinib in combination

with HU or ciclibs against cells carrying highly resistant CMs including

the T315I mutation have been demonstrated.16 It appears therefore

that the upregulation of CDK6 documented in BCR-ABL1-positive

cells displaying the T315I mutation alone or as part of a CM, provides

a therapeutically exploitable vulnerability of the mutant cells. If these

observations can be confirmed in the clinical setting, the therapeutic

armamentarium would facilitate control of mutant BCR-ABL1 sub-

clones resistant to all presently approved ABL1 TKIs. The

observations so far demonstrate that the impact of acquiring TKI-

resistant mutations may go far beyond hindering the TKI/TKD inter-

action. Studying the differential downstream signaling in mutant BCR-

ABL1 subclones should facilitate the understanding of their biological

behavior and help establish their druggable vulnerabilities, as a basis

for the development of novel effective treatment options in patients

resistant to currently available TKI-based therapies.

4 | ACTIVIN RECEPTOR LIGAND TRAPS
FOR THE TREATMENT OF ANEMIA
ASSOCIATED WITH CHRONIC
MYELOPROLIFERATIVE MALIGNANCIES

Anemia is not only common in patients with MF (and is a WHO minor

diagnostic criterion), but contributes adversely to the quality of life,

morbidity and mortality, and increased symptom burden. The activin

receptor ligand traps sotatercept (ACE-011) and luspatercept belong

to a novel class of fusion proteins that are capable of alleviating ane-

mia resulting from a range of benign and malignant conditions.17,18

These drugs consist of the extracellular domain of the activin receptor

(A in the case of sotatercept; B in the case of luspatercept) fused to

the Fc domain of human IgG1 and improve anemia by sequestering

ligands belonging to the TGF-β superfamily that suppress terminal

erythropoiesis.19 Mechanistically, growth and differentiation factor

11 (GDF11) has been considered to be an important TGF-β superfam-

ily ligand trapped by such agents that ameliorate anemia resulting

from diverse causes.20 Indeed, luspatercept was approved in

November 2019 for the treatment of anemia in patients with

β-thalassemia and patients with very low- to intermediate-risk

myelodysplastic syndromes with ring sideroblasts (MDS-RS) or

MDS/MPN with RS and thrombocytosis (MDS/MPN-RS-T) in April

2020.21

An important distinguishing feature of this class of drugs that sets

them apart from erythropoietin and its analogs is that they act on

late-stage erythroid precursors (Figure 1). Based on preclinical studies

suggesting anemia benefit secondary to its ability to sequester ligands

secreted by the MF bone marrow stroma that inhibit erythropoiesis

via Smad signaling, sotatercept was studied in an ongoing clinical

trial.22 Eligible patients had to be anemic or transfusion-dependent

(TD) per International Working Group for Myelofibrosis Research and

Treatment (IWG-MRT) criteria.23 Sotatercept was studied both as

monotherapy and in patients on a stable dose of ruxolitinib.24 The

response rate, a combination of transfusion independent (TI) by IWG-

MRT criteria and anemia response by Gale criteria, was 35% in

patients treated with sotatercept alone and 12.5% in patients treated

with the combination of sotatercept and ruxoloitinib.25 Grade 3 treat-

ment-emergent adverse events (TEAEs) were limited to hypertension

and limb pain. These findings initiated a phase 2 study of luspatercept

alone or in combination with ruxolitinib in 76 anemic patients with

MF, either alone (cohorts 1 and 2) or in combination with ruxolitinib

(cohorts 3A and 3B).26 Patients in cohorts 1 (n = 22) and 3A (n = 14)

could not have been receiving any transfusions, while patients in
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cohorts 2 (n = 21) and 3B (n = 19) had to be TD per IWG-MRT criteria.

By intention-to-treat analysis, the anemia response rates (by Gale

criteria) in cohorts 1 and 3A were 14% and 21%, respectively, while

the RBC TI rates in cohorts 2 and 3B were 10% and 32%, respectively.

The proportions of patients who achieved a mean increase in hemo-

globin of ≥1.5 g/dL and who achieved a ≥50% reduction in the num-

ber of units transfused also favored the ruxolitinib cohorts, a pattern

of response not well understood at this time. The most frequent

TEAEs included hypertension (12%), bone pain (9%), and diarrhea

(5%). Noteworthy, the activin receptor ligand traps discussed above

do not target TGF-β per se, a candidate therapeutic target in MF, and

discussed in the next section. This cytokine is secreted at high levels,

primarily by Mks in the MF bone marrow milieu, and is implicated in

both the fibrotic process and in promoting clonal dominance in the

classic MPNs.27

5 | CURRENT AND INVESTIGATIONAL
THERAPIES FOR MF

The introduction into clinical practice in 2011 of the original type I

JAKi ruxolitinib was an important therapeutic advance, as with this

agent most MF patients achieve substantial spleen volume reduction

(SVR) and improvement in total symptom score (TSS), and some may

expect prolongation of survival compared with earlier methods of

treatment.28,29 Ruxolitinib, an oral JAK1 and JAK2 inhibitor, targets

the ATP-binding site of the JAKs under the active conformation of

the kinase domain. The median duration of response to ruxolitinib is

about 2 to 3 years, and the prognosis of patients who relapse, or are

refractory or resistant, or have clonal evolution, have a median sur-

vival of 14 months.30,31 Patients with monocytosis, accelerated phase,

or high-risk genetic features also have a poor prognosis.32,33

Second-line therapies comprise of an alternative type I JAKi, or

agents that target mechanisms beyond JAK/STAT signaling, either

alone or in combination with JAKi. Many of these JAKis have had

their clinical development discontinued due to the emergence of seri-

ous toxicity. Fedratinib, a JAK2/FLT3 inhibitor, demonstrated efficacy

in both first and second-line, but a clinical hold was placed in 2013 by

the FDA due to concerns over increased risk for Wernicke encepha-

lopathy.34,35 This was subsequently revised and the drug licensed.36,37

Pacritinib, a JAK2/FLT3/IRAK1/CFS1R inhibitor, and momelotinib, a

JAK1/2 inhibitor, remain investigational. Pacritinib is being tested in

MF patients with thrombocytopenia at a revised dose in a randomized

phase III trial (PACIFICA).38 The drug was previously found to be

effective in phase III trials in reducing splenomegaly and symptom

control, but there were concerns about cardiotoxicity and

F IGURE 1 Luspatercept for the treatment of anemia in primary myelofibrosis
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hemorrhage.39,40 Momelotinib can improve anemia by improving

functional iron availability by decreasing hepcidin production through

the ACVR1 pathway. The drug was noninferior to ruxolitinib for SVR

but not TSS response in first-line and in second-line setting, there

were improvements in TI and TSS, but inadequate SVR.41,42 There

was concern for emergent peripheral neuropathy and further studies

are underway to assess the drug's candidacy for second-line anemic/

TD patients (MOMENTUM).

At present, a major focus of drug development in MF is identify-

ing new therapeutic targets beyond JAK-STAT inhibition (Figure 2). As

illustration, to mention a few, encouraging preliminary results have

been noted in trials investigating AURKA inhibitors, HDAC inhibitors,

PARP inhibitors, PRMT5 inhibitors, HDM2 inhibitors, hedgehog path-

way inhibitors, TGF-β inhibitors, telomerase inhibitors, and immuno-

modulatory drugs.43,44 Novel immunological therapeutic approaches

are also being tested, and include CD123 targeted antibody, mutant

CALR blocking antibodies, and peptide vaccination. Preclinical models

have also studied type II JAKis, such as NVP-BBT594 and

NVPCHZ868, and found them to be effective.45 Table 1 depicts some

of the agents that have shown safety and efficacy in second line use

either as monotherapy or in combination with ruxolitinib (“add-

on”/“add-back”).46

A focus on apoptosis is illustrated by an ongoing phase II study of

the BCL-XL inhibitor, navitoclax, combined with ruxolitinib.47 In this

small study, 29% of the patients achieved an SVR ≥35% and a 20%

improvement in TSS; 42% patients had SVR ≥35% at any time on

study; 25% patients had bone marrow fibrosis improvement; and 42%

patients were observed to have major molecular responses. Grade

3/4 TEAE included thrombocytopenia (44%) and anemia (24%). A

three-arm phase II trial (MANIFEST), assessing epigenetic modification

by a bromodomain and extraterminal inhibitor, CPI-0610, observed

80% of patients to achieve SVR ≥35 at week 12, 50% of patients to

achieve TSS response, 43% TD patients became TI and some improve-

ments in bone marrow fibrosis were noted in first-line setting with

CPI-060 plus ruxolitinib.48 The most common TEAEs were thrombo-

cytopenia (23%). Updated results of a phase II trial of ruxolitinib with

either thalidomide or pomalidomide, confirmed earlier positive results

demonstrating improvements in cytopenias, in particular thrombocy-

topenia and other clinical benefits.49,50

Other studies of note included a phase 1 study of an Mk-

targeting therapy, alisertib, a specific inhibitor of aurora kinase

(AURKA) demonstrated clinical benefits in a third of patients by

reducing splenomegaly and symptom burden.53 Importantly, alisertib

reduces bone marrow fibrosis, mutant allele burden and restores nor-

mal morphology in atypical MF Mks in some cases. The most common

grade 3/4 TEAEs were neutropenia (42%), thrombocytopenia (29%),

and anemia (21%). Another novel approach is tagraxofusp, a

CD123-directed antibody, composed of human IL-3 and truncated

F IGURE 2 Targeting cell signaling pathways beyond JAK/STAT
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diptheria toxin, licensed in 2018 for children and adults with blastic

plasmacytoid neoplasm.55 Tagraxofusp has been tested in a preclinical

model either alone or in combination with ruxolitinib and noted to

have activity in primary MF (PMF).56 Interim clinical results from a

phase 2 study of tagraxofusp in patients with relapsed/refractory MF

with thrombocytopenia observed spleen responses in 20% and symp-

tom reduction in half of the patients.51 The most common TEAE was

abnormal liver function tests and the most serious was a single patient

experiencing grade 4 capillary leak syndrome. The final results of a

phase 2 study assessing apoptosis induced by a SMAC mimetic (IAP

antagonists) agent in high-risk thrombocytopenic MF patients

observed an overall response rate of 32%, a modest anemia response

and a median overall survival that has not been reached with median

follow-up of about 2 years.57 The most common TEAEs were nausea/

vomiting (60%); fatigue syndrome (49%); grade 3/4 thrombocytopenia

occurred in 3 pts (6%) and correlative studies confirmed target-

inhibition (cIAP1). Results from a small phase I/II study of epigenetic

modification by means of a lysine specific demethylase1 inhibitor,

bomedemstat, showed 75% to have a modest decrease in SVR and

symptom burden, and bone marrow fibrosis improvement.52 A small

repurposing effort with a biguanide, metformin, to target bone mar-

row fibrosis revealed a progressive reduction in bone marrow collagen

fibers from 26.9% at baseline to 3.8% at 3 months and 0.84% at

6 months posttherapy.58 Finally, AVID200, a TGF-β ligand trap, has

shown promise in preclinical studies and is now in a clinical trial in

patients with MF.54

6 | GENOMIC RISK SCORES FOR
ALLOGENEIC STEM CELL
TRANSPLANTATION IN MF

At present, allografting remains the only potentially curative treat-

ment for patients with MF but is confounded by therapy-related mor-

bidity and nonrelapse mortality, due at least in part, to the older age

and the general poor condition of many patients at diagnosis.59 Trans-

plant outcomes have improved further with advances in transplant

technology which has increased donor availability, reduced transplant

toxicity and the introduction of reduced-intensity conditioning.60 Fur-

thermore, the potential use of JAKi therapy, pretransplant to reduce

splenomegaly and improve constitutional symptoms, peritransplant to

reduce graft vs host disease and posttransplant to improve long-term

outcomes appears attractive but requires confirmation.61

Until recently, there were no suitable risk stratification methodol-

ogy to optimize the decision-making process for treating MF patients

with transplantation. The best-studied method was the Lille score,

first introduced in 1996, for nontransplant treatment of patients with

PMF.62 Since then, multiple new risk assessment methods have been

introduced for PMF and extrapolated into the treatment-decision-

making process for all MF patients, including post-ET/PV MF who

comprise about 60% of MF, and adapted with modest success for

transplant selection criteria (Figure 3). These have included the Inter-

national Prognostic Scoring System (IPSS), based on age >65 years,

hemoglobin <10 g/L, leucocyte count >25 × 109/L, the presence of

circulating peripheral blasts and constitutional symptoms; the

Dynamic IPSS (DIPSS), which assesses prognosis during the course of

the disease and is based on the prognostic variables as IPSS but ranks

anemia as a higher risk factor; and the DIPSS-plus, which added

transfusion-dependence, platelet count <100 × 109/L and unfavor-

able karyotype to the DIPSS model.63-65 Current risk scores have

improved prognostic ability compared with IPSS and have incorpo-

rated genomic information to optimize risk stratification. These

include the updated Mutation-Enhanced Prognostic Score (MIPSS-70

version 2.0), which includes CALR type I mutation, the presence of

ASXL1, EZH2, SRSF2, U2AF1, or IDH1/2 mutations and a three-tiered

cytogenetic risk classification, myelofibrosis secondary to PV and ET

(MYSEC-PM) score, which includes the presence of constitutional

symptoms, platelets <150 × 109/L, hemoglobin <11 g/dL, circulating

blasts >3% and a CALR-unmutated genotype, and a simpler genetic

risk score, the genetically inspired scoring system.66-68 These risk

models are clearly useful in the nontransplant setting but are not opti-

mal for transplant purposes, possibly due to the omission of

transplant- and patient-specific factors that influence clinical out-

comes following a transplant.69,70

In 2019, a risk score, the myelofibrosis transplant scoring system

(MTSS), was developed specifically for all MF patients to predict

TABLE 1 Myelofibrosis clinical drug development programs

Drug (class) Comments Reference

Momelotinib (JAK1/2

inhibitor)

Ongoing Phase 3

(NCT04173494)

46,47

Pacritinib (JAK2/ FLT 3

inhibitor)

Ongoing Phase 3

(NCT03165734)

44,45

Luspatercept ± ruxolitinib

(receptor type IIb and

IgG1Fc domain)

Ongoing phase 2

(NCT03194542)

26

CPI-0610 ± ruxolitinib

(BET inhibitor)

Ongoing phase 2

(NCT02158858)

48

Navitoclax + ruxolitinib

(Bcl-2 inhibitor)

Ongoing phase 2

(NCT03222609)

47

Pomalidomide + ruxolitinib

(immunomodulatory)

Ongoing phase 2

(NCT01644110)

49

Thalidomide + ruxolitinib

(immunomodulatory)

Ongoing phase 2

(NCT03069326)

50

Tagraxofusp (CD123

targeted antibody)

Ongoing phase 2

(NCT02268253)

51

Bomedemstat (LSD1

inhibitor)

Ongoing phase 2

(NCT03136185)

52

Alisertib (Aurora kinase

inhibitor)

Ongoing phase 1/2

(NCT02530619)

53

Imetelstat (Telomerase

inhibitor)

Completed phase 1/2

(NCT01731951)

44

AVID200 (TGF-β ligand
trap)

Ongoing phase 1

(NCT03895112)

54

Abbreviations: BET, bromodomain and extraterminal; LSD1, lysine specific

demethylase1; TGF-β, transforming growth factor beta.
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outcomes after transplantation.71 MTSS was formulated at diagnosis

in a cohort of 361 patients (PMF = 260; post-ET MF = 101; post-PV

MF = 46) and excluded patients who had progressed to acute

leukemia. It is based on multivariable analysis which identified age

(≥57 years), Karnofsky performance status (<90%), pretransplant

thrombocytopenia, leucocyte count (>25 × 109/L), HLA-mismatched

Age Hb
(g/dL)

PLT 
(x109/L)

WBC
(x109/L)

Blast
(%)

P.S. BM
fibrosis

Driver 
muta�on

Addi�onal 
muta�on

Donor

DIPSS > 65
(1)

< 10
(2)

- > 25
(1)

≥ 1%
(1)

C.S.
(1)

- - --

MIPSS-
70 v2.0

- < 10
(1)

< 100
(2)

> 25
(2)

≥ 2
(1)

C.S.
(1)

≥ 2
(1)

Non
CALR T1 (1)

HMR (1)
>2 (2)

-

MYSEC-
PM

Cont
(0.15)

< 11
(2)

< 150
(1)

-- ≥ 3
(2)

C.S.
(1)

Non CALR
(2)

- -

MTSS > 57
(1)

- < 150
(1)

> 25
(1)

- K. < 90% 
(1)

- Non-CALR / 
MPL (2)

ASXL1
(1)

MMU
(2)

Notes
DIPSS (Dynamic Interna�onal Prognos�c Scoring System); MIPSS-70 (Muta�on-Enhanced Interna�onal Prognos�c Score System); MYSEC-PM (Myelofibrosis 
Secondary Prognos�c model); MTSS (Myelofibrosis Transplant Scoring System). Hb: hemoglobin value; PLT: platelet count; WBC: white blood cell count; PS: 
performance status; BM: bone marrow; Cont: Con�nuous; CS: cons�tu�onal symptoms; K: Karnofsky; HMR: high molecular risk; MMU Mismatched 
unrelated
DIPSS categories: low (0); intermediate-1 (1-2), intermediate-2 (3-4), high risk (5-6)
MIPSS-70 categories: low (0-1); intermediate (2-4), high risk (≥5)
MYSEC-PM categories: low (<11); intermediate-1 (11-13), intermediate-2 (14-15), high risk (≥16). h�p://www.mysec-pm.eu
MTSS categories: low (0-2); intermediate (3-4), high (5), very high risk (6-9)

F IGURE 3 Risk assessment methods for patients with myelofibrosis

MF diagnosis

<70 years PMF SMF

NGS NOT available NGS available

MIPSS-70 modelDIPSS model

MYSEC-PM model

PMF-short term (<5 years) survivors

Intermediate-2/High risk
ASXL1-pos Intermediate-1

High risk

SMF-short term (< 5 years) survivors

Intermediate -2/High risk

Low risk
5-years OS: 90%
TRM: 10%

Int-1 risk
5-years OS: 77%
TRM: 22%

High risk
5-years OS: 50%
TRM: 36%

Very High risk
5-years OS: 34%
TRM: 57%

NOGO SLOW GOGODecision on SCT

Age PLT 
(x109/L)

WBC
(x109/L)

P.S. Driver 
muta�on

Addi�onal
muta�on

Donor

MTSS > 57
(1)

< 150
(1)

> 25
(1)

K. < 90% 
(1)

Non-CALR / 
MPL (2)

ASXL1
(1)

MMU
(2)

MTSS GROUPS: low (0-2); intermediate (3-4), high (5), very high risk (6-9)

F IGURE 4 A potential treatment algorithm incorporating transplantation for patients with myelofibrosis (MF) (courtesy of Prof Francesco
Passamonti)

658 MUGHAL ET AL.



unrelated donor, ASXL1 mutation and triple-negative, and non-CALR/

MPL or JAK2 driver mutation as independent prognostic factors for

posttransplant survival. A comparison of the MTSS with some of the

nontransplant risk-scoring systems, including those (such as MPISS-70

or MYSEC-PM) incorporating genetic information that now consid-

ered an integral facet, suggests an improvement in the patient selec-

tion for transplantation for all MF patients with respect to

posttransplant outcomes.72 Figure 4 depicts a potential treatment

algorithm incorporating transplantation for patients with MF. It is of

interest that neither constitutional symptoms, nor clinical variables

such as transfusion dependence, appear to influence outcome after

transplantation. Clearly, the MTSS will require additional validation

prior to wider clinical use, but represents conceivably an important

step forward in precision cancer medicine for patients with MF.

7 | A FIVE DECADE ODYSSEY OF
INTERFERON-α IN CHRONIC
MYELOPROLIFERATIVE LEUKEMIAS

Interferon-α (IFNα) is a member of a large family of glycoproteins of

biologic origin with antiviral and antiproliferative properties. Studies in

the early 1980s showed that IFNα was active in CML and able to

induce major cytogenetic remissions in 5% to 15% of patients with

restoration of Ph-negative (putatively normal) hematopoiesis and a

survival advantage. IFNα, in particular the long-acting form, has since

been tested in MPNs in phase 2 studies, including the MPD-RC

111 trial in which recombinant IFNα-2a was observed to reverse all

hematological features of PV in 22% of the 50 HU refractory/intoler-

ant patients.73-75 More recently, ropeginterferon-α-2b was compared

to HU in a prospective randomized controlled phase 3 trial (PROUD-

CONTINUATION) in patients with PV.76 The 4-year follow-up of this

study demonstrated sustained complete hematological responses in

61% of patients treated with IFNα vs 43% in the HU group (P = .02),

with a similar efficacy for reducing thromboembolic events to very

low rates (0.0%, 0.0%, and 1.1% of patients treated with IFNα in the

second, third, and fourth years).77 Of particular interest was the

observation that 67% of IFNα-treated patients achieved reduction in

the JAK2V617F allele burden compared with 26% of the HU-treated

cohort (RR: 2.5 [95% CI: 1.7-3.7; P < .0001]). Serial measurements of

the allele burden in the IFNα-treated patients confirmed 14% com-

plete molecular remissions and 36% major molecular response at

month 48. This raises the important question of whether these

“molecular responders” would have their life prolonged by treatment

with IFNα compared with HU. Furthermore, the majority of the

“molecular responders” also achieved complete hematological remis-

sions, suggesting that treatment discontinuation could be possible.

Toxicity after 4 years was generally mild and reversible, and was simi-

lar between the two groups of patients: 28% (IFNα) vs 22.9% (HU);

four cases of secondary malignancies have been reported in the HU

patients so far. Collectively, these observations signal the need to

consider the merits of IFNα replacing HU as the primary treatment for

PV and randomized controlled studies to test it against ruxolitinib, the

latter of which was approved as a second-line therapy for PV in

2014.78

8 | CONCLUSION

MPNs are clonal stem cell neoplasms with heterogenous clinical phe-

notypes and complex genetic architecture, which currently remain

incurable. Treatment with a choice of two first-line orally administered

JAKis, ruxolitinib, and fedratinib, for patients with MF has led to sub-

stantial symptomatic improvement, improvement in quality of life, but

no sustained disease modification or long-term remissions. It seems

crucial, therefore, to improve our understanding of the various JAKi

resistance mechanisms and develop new treatment approaches

beyond JAK-STAT inhibition. Moreover, new MPN biological and clin-

ical entities, such as those associated with the novel JAK2ex13InDel

mutation and linked with eosinophilia and erythrocytosis, add to the

heterogeneity and underline the need for reconciliation within the

treatment algorithm.79 The improved molecular technologies, such as

single-cell transcriptome approaches tracking somatic mutations and

characterizing cellular and molecular features are informing on clonal

dynamics and architecture in MF and allowing insights into disease

progression and treatment. scRNAseq demonstrates a Mk-biased

differentiation in MF stem and progenitors that are associated with

specific molecular signatures and suitable for Mk-targeted thera-

pies. In contrast to MF, most patients with CML have an overall sur-

vival similar to that of the general population, following treatment

with any of the ABL1 TKIs licensed for first-line therapy. Resistance,

however, from mutant BCR-ABL1 subclones arising from the likely

disruption of the TKI/TKD interaction, is increasingly being recog-

nized as a serious problem due to the biological effect on BCR-ABL1

downstream signaling and oncogenic gene expression. These

mutant clones display highly upregulated CDK6 and raise the possi-

bility of new therapeutic approaches. Last but not least, the long-

term data from the randomized PROUD-CONTINUATION study in

patients with PV raises the prospect of IFNα replacing HU as the

primary treatment for this MPN.
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